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Solution
(a) In the given network, C,, C, and C, are connected in series. The
effective capacitance C’ of these three capacitors is given by
1 1 1 1
=—+—+—
C C G G
For C, = C,= C,= 10 uF, C’=(10/3) pF. The network has C”and C,
connected in parallel. Thus, the equivalent capacitance C of the
network is
, 10
cC=C+C,= (?+10) uF =13.3uF
(b) Clearly, from the figure, the charge on each of the capacitors, C,,
C, and C, is the same, say Q. Let the charge on C,be Q". Now, since
the potential difference across AB is Q/C,, across BC is Q/C,, across
CDis Q/C, . we have
9 + 9 + 9 =500V
G G G
o Also, Q°/C,= 500 V.
2 This gives for the given value of the capacitances,
|
% Q=500Vx%uF=1.7x10‘SC and
& Q' =500V x10uF=5.0x10°C
2.15 ENERGY STORED IN A CAPACITOR
A capacitor, as we have seen above, is a system of two conductors with
charge Q and -Q. To determine the energy stored in this configuration,
consider initially two uncharged conductors 1 and 2. Imagine next a
process of transferring charge from conductor 2 to conductor 1 bit by
bit, so that at the end, conductor 1 gets charge Q. By
Q _0-50" 0 -9 charge copservatmn, conductor 2 has charge -Q at
+ _ + _ the end (Fig 2.30).
—’_
+ - = In transferring positive charge from conductor 2
+ 8Q — to conductor 1, work will be done externally, since at
e T * _| any stage conductor 1 is at a higher potential than
+ +— - +T>—— y g g p
+ _ y— conductor 2. To calculate the total work done, we first
+ + " =| calculate the work done in a small step involving
- - oo . L1
+ — transfer of an infinitesimal (i.e., vanishingly small)
) * h 5 ) — 5 amount of charge. Consider the intermediate situation

(a)

when the conductors 1 and 2 have charges Q" and
(b) —@’respectively. At this stage, the potential difference

FIGURE 2.30 (a) Work done in a small ~ V’between conductors 1 to 2 is Q’/C, where C is the
step of building charge on conductor 1 capacitance of the system. Next imagine that a small
from Q" to Q"+ 6 Q" (b) Total work done  charge §Q’is transferred from conductor 2 to 1. Work

in charging the capacitor may be
viewed as stored in the energy of
electric field between the plates.
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done in this step (6 W), resulting in charge Q” on
conductor 1 increasing to Q@+ § Q’, is given by

SW =V'6Q = %59' (2.68)
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Since 6 @ can be made as small as we like, Eq. (2.68) can be written as

_L ’ n2 _ ’2
5W—2C[(Q +6Q) -Q] (2.69)

Equations (2.68) and (2.69) are identical because the term of second
orderin § Q% i.e., §Q’?/2C, is negligible, since § Q’is arbitrarily small. The
total work done (W) is the sum of the small work (6 W) over the very large
number of steps involved in building the charge Q from zero to Q.

w= ) W
sum over all steps
1
= Q" +9) -9”]
sum ov;ll steps 2C (2 ’ 70]
1
= 5cll697 -0+ (26Q) - 69%} H(35Q) - (269} +...
+19” - (Q - 59} (2.71)
L 2 o’
= —[Q*-0]=Z
2c'9 = 5¢ (2.72)
The same result can be obtained directly from Eq. (2.68) by integration
Q ’ 2 @ 2
w=[Lsg-19 | -
o C c 21 2C

This is not surprising since integration is nothing but summation of
a large number of small terms.
We can write the final result, Eq. (2.72) in different ways
Q> 1 ., 1
W==_=_CV:=—QV ,
2C 2 2 9 (2.73)

Since electrostatic force is conservative, this work is stored in the form
of potential energy of the system. For the same reason, the final result for
potential energy [Eq. (2.73)] is independent of the manner in which the
charge configuration of the capacitor is built up. When the capacitor
discharges, this stored-up energy is released. It is possible to view the
potential energy of the capacitor as ‘stored’ in the electric field between
the plates. To see this, consider for simplicity, a parallel plate capacitor
[of area A (of each plate) and separation d between the plates].

Energy stored in the capacitor

2 2
_19° (Ao d (2.74)
2 C 2 EA

The surface charge density ois related to the electric field E between

the plates,
o

E e (2.75)

From Eqgs. (2.74) and (2.75) , we get

Energy stored in the capacitor

U= (1/2)gE*x Ad (2.76)
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Note that Ad is the volume of the region between the plates (where
electric field alone exists). If we define energy density as energy stored
per unit volume of space, Eq (2.76) shows that

Energy density of electric field,

u=(1/2)¢,E* (2.77)

Though we derived Eq. (2.77) for the case of a parallel plate capacitor,
the result on energy density of an electric field is, in fact, very general and
holds true for electric field due to any configuration of charges.

Example 2.10 (a) A 900 pF capacitor is charged by 100 V battery
[Fig. 2.31(a)]. How much electrostatic energy is stored by the capacitor?
(b) The capacitor is disconnected from the battery and connected to
another 900 pF capacitor [Fig. 2.31(b)]. What is the electrostatic energy
stored by the system?

Q -9
+Q -9 2 2
i il
+ = + -
+ = + =
+ - + -
ar = + -
+ - + -
+ _ + -
+‘ ‘— +‘ ‘_
C C
100 V
o o Q _ -
4L -
+ -
(a) + =
M
C
(b)

FIGURE 2.31

Solution
(a) The charge on the capacitor is

Q=CV=900x 102Fx100V=9x10°C
The energy stored by the capacitor is

= (1/2) CV? = (1/2) QV
=(1/2)x9x10°C x 100V =45x 10°%J

(b) In the steady situation, the two capacitors have their positive
plates at the same potential, and their negative plates at the
same potential. Let the common potential difference be V’. The
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charge on each capacitor is then Q° = CV’. By charge
conservation, Q° = @Q/2. This implies V' = V/2. The total energy

of the system is = 2><%Q'V'= iQV =2.25x107°%J

Thus in going from (a) to (b), though no charge is lost; the final
energy is only half the initial energy. Where has the remaining
energy gone?

There is a transient period before the system settles to the
situation (b). During this period, a transient current flows from
the first capacitor to the second. Energy is lost during this time
in the form of heat and electromagnetic radiation.

SUMMARY

Electrostatic force is a conservative force. Work done by an external
force (equal and opposite to the electrostatic force) in bringing a charge
q from a point R to a point P is q(V,-Vy), which is the difference in
potential energy of charge g between the final and initial points.

Potential at a point is the work done per unit charge (by an external
agency) in bringing a charge from infinity to that point. Potential at a
point is arbitrary to within an additive constant, since it is the potential
difference between two points which is physically significant. If potential
at infinity is chosen to be zero; potential at a point with position vector
r due to a point charge Q placed at the origin is given is given by

9

V(r)=
i 4me, T

The electrostatic potential at a point with position vector r due to a
point dipole of dipole moment p placed at the origin is

1 ps
4me 1>

The result is true also for a dipole (with charges —q and g separated by
2a) for r>>a.

V(r) =

For a charge configuration q,, g,, ..., g, with position vectors r,
r,, ... r , the potential at a point P is given by the superposition principle
1

= (i+q—2+...+q—")
4TE, hp Top Top

where r,, is the distance between g, and P, as and so on.

An equipotential surface is a surface over which potential has a constant
value. For a point charge, concentric spheres centred at a location of the
charge are equipotential surfaces. The electric field E at a point is
perpendicular to the equipotential surface through the point. E is in the
direction of the steepest decrease of potential.
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